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Abstract
In this work, we carry out the analysis of the resonance absorption of
electromagnetic radiation for the system in which para- and ferromagnetic
phases coexist over a wide temperature region. It is found that taking account
of the mutual influence of coexisting phases gives rise to the appearance
of substantial changes in the curves of resonance absorption and values of
resonance fields, as well as to making the geometry of a phase distribution
dependent on an external magnetic field. Near the temperature boundaries of
the phase coexistence region, the expressions for description of the curves of the
dispersive absorption of electromagnetic radiation are obtained and the rules of
the behaviour of the resonance fields for each of the phases are specified. As
follows from the calculations, the resonance field for the paramagnetic phase
becomes dependent on the shape of the sample, the saturation magnetization and
the fraction of ferromagnetic phase. It is shown that the character of magnetic
resonance spectra and the features of their temperature change agree well with
the experimental data, obtained by various groups of researchers on the single
crystalline and polycrystalline samples of doped perovskite manganites.

1. Introduction

In recent years, the doped perovskite manganites R1−xAx MnO3, where R is a rare earth and
A is an alkaline or alkaline earth element, have attracted a great deal of research interest due
to a number of unusual physical properties including the colossal magnetoresistance effect
(CMR) [1]. The essence of the CMR consists in a very large (several orders in magnitude)
decrease in electric resistance under the action of magnetic field. Primarily due to this effect
the doped perovskite manganites are considered as promising materials for a new generation of
magnetic sensors and readout elements in magnetic storage devices.

The results of numerous theoretical and experimental investigations have shown that
strong tendencies toward phase separation play an essential role in the given class of materials
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and often an inhomogeneous state, characterized by a coexistence of different electronic and
magnetic phases, becomes more favourable than a homogeneous one [1–7]. To clarify the
physical picture within the region of magnetic phase coexistence, the method of magnetic
resonance can be used as a highly informative tool. It is well known that even a minor
inhomogeneity of magnetic materials manifests itself in noticeable transformations of magnetic
absorption spectra. To date, a number of research groups (see, for example [2–15]) have
studied the spectra of magnetic resonance, but an unambiguous picture is mainly obtained for
magnetically homogeneous regions. The results that embrace the temperature regions near
the points of magnetic phase transitions considerably differ from each other and are often
interpreted from different points of view.

It is revealed in papers [3, 8–11] that in the vicinity of a paramagnetic (PM) to
ferromagnetic (FM) transition the spectra of electron spin resonance (ESR) for a number of
R1−xAx MnO3 compounds consist of two well resolved lines. What is more, in all the cases,
the resonance field of one of the lines decreases with the temperature lowering, whereas that of
the other increases. It follows from the analysis of the experimental results that such behaviour
is characteristic of both the single crystalline and polycrystalline samples. The authors identify
one of the lines of the resonance absorption as belonging to the ferromagnetic phase. As
concerns the other line, the researchers tried to ascribe it to PM [3, 8, 10, 16], spin glass [9] or
antiferromagnetic [11] phases, but its nature still remains unclear.

It should be noted that the fact that an ESR spectrum consists of two lines does not
necessarily imply the coexistence of two different magnetic phases. Under some specific
conditions, such a picture can also be observed in single phase ferromagnetic samples [17–22].
Let us analyse such cases in more detail and examine if they are applicable to the explanation
of the above phenomena.

It is known that a number of parameters, namely the presence of crystallographic
anisotropy, the shape and orientation of a sample, strain, degree of inhomogeneity, porosity, and
others, exert a strong influence on the character of the ESR spectra. In most cases, the presence
of these factors leads to a change in the width of the resonance curve, a shift of its maximum,
and a distortion of its shape, but not to the appearance of two lines (a review of the influence
of such factors can be found in [19]). The splitting of the ESR spectrum is most likely in the
systems which are characterized by these kinds of nonuniform angular or size distribution of
the local effective magnetic fields Heff, which lead to the appearance of two or more preferred
directions of the orientation of local magnetic moments (for example, textured polycrystals,
ensembles of particles with specific shape or size distributions, and others). Theoretical
calculations show that this effect can also be observed in polycrystalline ferromagnets or in an
ensemble of single domain anisotropic particles with the uniform distribution of the effective
local magnetic fields (in particular, anisotropy fields), but only under the condition that the
magnitude of Heff exceeds a certain threshold value [19–22].

The analysis shows that such approaches are inapplicable to the explanation of the
phenomena of the ESR spectrum splitting observed in single crystalline and polycrystalline
samples of doped manganites. It is known that the crystals of these materials are weakly
anisotropic (see, for example [23]) and this especially concerns the region of temperatures near
the para- to ferromagnetic transition. Therefore, the realization of the latter scenario seems to
be unlikely. At the same time, there are no reasons to suggest that at the heart of the observed
effects lies the nonuniformity of the distribution of crystallites in shape or direction (the former
scenario), since the splitting and unusual behaviour of resonance fields have been observed in
the samples of various microstructures and textures: in spherical [8] and rectangular [3] single
crystals, in poly- and nanocrystalline powders [10, 16], and in films [9, 11].
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A complex investigation of the properties of a spherical single crystal of La0.7Ca0.3MnO3

was performed in work [8]. Based on the results of the comparative analysis of the temperature
behaviour of magnetic and electric properties, on the one hand, and two lines observed in the
ESR spectra, on the other hand, the authors came to a conclusion that the lines of the resonance
absorption correspond to the PM and FM phases coexisting over a wide temperature range. At
the same time, they made a suggestion that the presence of the FM phase gives rise to a change
in the resonance field of the PM phase and vice versa. However, no quantitative estimation of
this effect was made.

In the present work, we analyse the behaviour of the system in which the PM and FM
phases coexist over a wide temperature range and show that taking into account the mutual
influence of the phases leads to remarkable changes in the behaviour of resonance fields
and curves of dispersive absorption, and that the geometry of the phase distribution becomes
governed by an external magnetic field.

2. Thermodynamic aspect of the problem

A PM to FM transition is usually considered to be a second-order (continuous) phase transition
(PT) [24]. A distinguishing characteristic of such kinds of PTs is that at a transition point
a thermodynamic potential of a system, as well as its first derivatives with thermodynamic
variables, change continuously, whereas a second derivative exhibits a discontinuity. The
continuity of the first derivatives at a PT point means that such transitions have no latent
heat [24]. In the case of magnetic materials, the expressions for the second derivatives of the
corresponding thermodynamic potentials include, in particular, a heat capacity and magnetic
susceptibility. In the case where a PM to FM transition belongs to the continuous PT, the
magnetization, which characterizes the first derivative of the thermodynamic potential with
a magnetic field, increases continuously as the temperature is lowered through the transition
point, whereas the magnetic susceptibility changes anomalously [24, 25].

The first-order PTs are those that involve a latent heat [24]. The first-order transitions
are associated with a mixed-phase regime in which some parts of the system have completed
the transition and others have not; this means that both the phases coexist within a certain
temperature region. At a fast increase or decrease in temperature, a temperature hysteresis is
observed, which is often used for the identification of the first-order PTs [24–26].

Magnetic systems can exhibit magnetic transitions that are thermodynamically of first
order when the magnetic order parameter (magnetization) is strongly coupled to the lattice
deformations [25–28]. The necessary criterion which determines if a magnetic transition
occurs via the first-order PT was obtained in papers [29–31]. This criterion is often satisfied
in CMR manganites [25–28, 32–35]. For these materials, the experimental evidence for the
occurrence of PM–FM transitions as first-order PTs is contained in papers [25–28, 32, 33].
A satisfactory description of the thermodynamics of these and similar systems is achieved in
papers [25, 34–37]. So, Novak et al [25] analysed the temperature behaviour of magnetization
using the mean field theory, which besides the exchange interaction also includes the
dependence, characterized by a coupling parameter η, of this interaction on the interatomic
distances. A satisfactory agreement of the theoretical calculations with the experimental data is
found. The critical parameter to determine the order of the transition, introduced by the authors,
was shown to be proportional to the coupling parameter η.

As was noted above, when the PM to FM transition occurs via the first-order PT, both the
phases can coexist over a wide temperature region, being at the same time in an equilibrium
state. It is this situation that we consider below and for which the magnetization dynamics is
studied. While analysing the behaviour of such a system, we assume that the strong coupling
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Figure 1. A graphic illustration of a spherical PM particle containing FM clusters. He is the external
magnetic field.

of the magnetic order parameter to the lattice deformations, which makes the PM to FM
transition belong to the first-order PT, influences for the most part the temperature behaviour
of magnetization, whereas its effect can be neglected while considering the situation at a fixed
temperature.

3. Splitting of the resonance fields in a region of coexistence of PM and FM phases

Consider a spherical particle at a temperature T , where T is high enough that the whole
volume of the particle is in the paramagnetic state. As the temperature decreases below a
certain value Tc1, the clusters of the FM phase are nucleated in the particle volume (figure 1).
The nucleation mechanisms at the first-order PTs were analysed in detail in [24]. The most
favourable regions for the nucleation are those which contain various kinds of composition or
structure imperfections (dislocations, intergrain boundaries, and others). In especially perfect
crystals, a fluctuation mechanism is predominant [24].

Denote the total volume of the FM and PM phases as VFM and VPM, respectively. It is
noteworthy that VFM + VPM = V , where V is the particle volume. Assume that a fraction of the
FM phase increases with a further decrease in temperature and the whole volume of the particle
becomes ferromagnetic as the temperature reaches a value Tc2. Carry out theoretical analysis of
the splitting of magnetic resonance fields for two limiting cases where T → T −

c1 (VFM � VPM)

and T → T +
c2 (VFM � VPM).

3.1. Splitting of the resonance fields in the vicinity of the temperature of the FM phase
nucleation

Assume that the temperature T of the particle meets a condition 0 < (Tc1 − T )/Tc1 � 1.
Under this condition, the FM clusters are formed in the particle volume, but the fraction of the
FM phase is very small (VFM � VPM). Consider a case where the magnetization of the FM
clusters is aligned parallel to the external magnetic field whose direction coincides with the Oz
axis (see figure 1). The reason for making this assumption will be discussed below.

To determine the magnetic field at a point of the location of a certain FM cluster, let us
neglect the local contributions depending on the nearest neighbours’ arrangement and take into
account only magnetostatic field depending on shape and average magnetization of the particle:

H = He − Nz〈M〉, (1)
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where He is the external magnetic field, Nz the demagnetizing factor along the z axis, whose
value equals 4π/3 for a spherical particle, and 〈M〉 is the average magnetization of the particle.

For a particle of a spherical shape, the direction of the internal magnetic field coincides
with that of the external one, which sufficiently simplifies the further consideration and allows
us to concentrate on the essence of the phenomenon of the resonance fields splitting. Later
on, some of the expressions will be generalized to the case where a particle has a shape of an
ellipsoid of rotation around the z axis (Nx = Ny ≡ N⊥; Nz + 2N⊥ = 4π).

Consider an isolated FM cluster. Assume for simplicity that it has the shape of an ellipsoid
of rotation elongated along the Oz axis, parallel to the field lines of the permanent magnetic
field. Denote the demagnetization factors of the ellipsoid along and perpendicular to the Oz
axis as n‖ and n⊥, respectively (n‖ < n⊥).

Focus on the case where apart from the permanent magnetic field H e
z , a weak alternating

field he
⊥, aligned perpendicular to the Oz axis, acts on the system. The latter gives rise to

small transverse perturbations of the cluster magnetization. Accounting for the fact that in
the ferromagnetic state, the absolute value of the magnetization keeps constant (M2 = const),
represent the magnetization vector of the cluster in the form

M =
( mx

m y

M0 − m2
⊥/2M0

)
m⊥ = mx ex + m yey, (2)

where M0 is the saturation magnetization and m⊥ is the small transverse perturbation of the
magnetization of the FM cluster.

While determining the energy of the cluster, let us take into account the field H acting on it
(see (1)), the cluster’s own magnetostatic field, and surface energy. Then, assuming that in the
ground state the cluster is magnetized along the Oz axis and accounting for (2), the cluster’s
energy can be written as

W = W1 + W2;
W1 = v · ( 1

2 n‖M2
0 − M0 · (H e

z − Nz〈Mz〉) − σ(T )s/v),

W2 = v · ( 1
2 (HFM/M0) · m2

⊥ − m⊥ · (he
⊥ − N⊥〈M⊥〉)),

HFM = (n⊥ − n‖) · M0 + H e
z − Nz · 〈Mz〉

(3)

where he
⊥ = he

x ex + he
yey is a small in magnitude alternating magnetic field aligned

perpendicular to the Oz axis, v is the cluster volume, σ(T ) is the density of the surface energy,
and s/ν is the ratio of the surface area of the cluster to its volume.

The first term in expression (3), W1, determines the magnetic energy of the cluster in
the ground state, whereas the second one, W2, describes the small magnetostatic and Zeeman
perturbations caused by the action of the alternating magnetic field. The analysis of the
expression for W1 makes it possible to draw some conclusions about the shape of ferromagnetic
clusters. As the volume of the cluster is fixed, the surface energy achieves a minimum when
the cluster takes a spherical shape, but the minimization of the magnetostatic energy term,
n‖ M2

0 v/2, requires elongation of the cluster along the magnetic field lines. Therefore, to
achieve a compromise, it is favourable for the clusters to take a shape which is close to the
ellipsoid of rotation with a long axis parallel to the direction of the external magnetic field. For
this reason, we can conclude that n‖ < 4π/3.

The cluster magnetization, being kept as a single whole due to the strong intracluster
exchange interaction, oscillates around the equilibrium position. The dynamics of the cluster
magnetization is described by the Landau–Lifshitz equations, which, with regard for the
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relaxation term in the Hilbert form, read

(HFM + iαFM Hω)mx − iHωm y = M0(h
e
x − N⊥〈Mx 〉),

iHωmx + (HFM + iαFM Hω)m y = M0(h
e
y − N⊥〈My〉), (4)

where Hω = ω/γ (γ = 2μ0/h̄), μ0 is the Bohr magneton, and αFM the dissipative constant of
the FM phase.

To simplify the calculations, let us introduce the variables m± = mx ± im y . Then, the
solutions of equations (4) can be expressed as

m± = χ± · (he± − N⊥〈M±〉);
χ± = M0/Hω

(HFM/Hω − 1 ± iαFM)
,

he± = he
x ± ihe

y, 〈M±〉 = 〈Mx 〉 ± i〈My〉,
N⊥ = Nx = Ny .

(5)

The fact that the average magnetization of the particle, 〈M±〉, depends itself on the
oscillations of the magnetic moments of individual clusters complicates the analysis. However,
in the vicinity of the point of the FM phase nucleation, Tc1, where |〈M±〉| � |H e|, the second
term in expression for m± (see (5)) can be neglected and the expression can be reduced to
m± = χ± · he±

.
In sections 4 and 5, expression (5) will be used to calculate the dispersive absorption

curves. At this stage, let us only calculate the resonance conditions for the oscillations of
the cluster magnetic moment. As follows from (5), in the limit αFM → 0, the denominator in
the expression for χ± becomes zero when the equality

Hω = HFM = (n⊥ − n‖)M0 + H e
z − Nz〈Mz〉 (6)

is fulfilled. This allows us to find the value of the external field H e
z at which χ± goes to

infinity. With regard for the facts that the separate clusters differ from each other in a shape and
the particle magnetization is small in the vicinity of Tc1, the expression for H e

z can be rewritten
as

H e
z = Hω − (

n⊥ − n‖
)

M0. (7)

The overbar means the average over the ensemble of clusters contained in the particle. Actually,
the relation (7) determines the value of external field at which the resonance for the FM phase
occurs in the vicinity of Tc1. It is noteworthy that the value of the resonance field for the
FM phase is determined not by the particle shape as is usually suggested at the analysis of
experimental results [8–10, 16], but by the shape of the FM clusters.

Calculate the resonance field for the PM phase. According to [19], the resonance
conditions for an arbitrary chosen PM region occur when Hω = ω/γ becomes equal to the
value of magnetic field acting on this region. In the case under consideration, the average field
which acts on the PM region is not equal to the external magnetic field, but to the effective field
which is determined by expression (1). Thus, the condition for the paramagnetic resonance to
occur reads

Hω = H e
z − Nz〈Mz〉. (8)

Taking into account that the magnetization of the particle is mainly determined by the amount
of FM phase, the value of the resonance field for the PM phase can be written in the form

H e
z = Hω + Nz M0(T ) · VFM(T )

V
, (9)

where V is the particle volume and VFM(T )/V is the fraction of the FM phase at a given
temperature. It should be noted that the resonance field of the PM phase becomes dependent
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Figure 2. A graphic illustration of the application of a superposition principle to a FM particle with
PM inclusions.

on the particle shape, the saturation magnetization of ferromagnetic clusters, and the fraction
of FM phase at a given temperature.

3.2. Splitting of the resonance fields in the vicinity of Tc2

For temperatures slightly higher than Tc2 (0 < (T − Tc2)/Tc2 � 1), the inequality VFM � VPM

is valid. This situation is reverse to that considered above. Assume that the whole volume of
the particle is in the ferromagnetic state except for the small clusters of PM phase.

To analyse the effects of a shape and effective field of PM clusters, calculate the energy
of the spherical FM particle containing the inclusions of PM phase. Let us proceed from a
superposition principle, i.e. consider the PM clusters as the fictitious FM fragments of the same
shape, which are magnetized opposite to the magnetic field direction and put into the uniformly
magnetized particle (figure 2).

The energy of the system can be written as

E = E0 +
∑

a

νa{M0 · (H e
z − Nz〈Mz〉) + 1

2 · na
‖ M2

0 + σ(T ) · sa/va}, (10)

where E0 is the energy of the uniformly magnetized particle, na
‖ the demagnetizing factor, taken

in a magnetization direction, of a fictitious cluster, and va is the volume of the cluster number
a. The last term in expression (10) accounts for the surface energy of the clusters. It includes
the density of the surface energy σ(T ) and the ratio of the surface area of the cluster to its
volume, sa/va . As in the case considered above, it is favourable for the clusters to take the
shape which is close to the ellipsoid of rotation with a long axis parallel to the direction of the
external magnetic field. Thus, we can conclude again that na

‖ < 4π/3.
The magnetic field inside the paramagnetic cluster number a is equal to

H a = H e
z − Nz〈Mz〉 + na

‖ M0. (11)

Accounting for the dependence 〈Mz 〉 = M0(1 − VPM/V ) and neglecting the latter term (since
VPM � VFM < V in the vicinity of Tc2), we find that the resonance field for the PM phase
tends to a limit

H e
z = Hω + (Nz − na

‖)M0 (12)

in the vicinity of Tc2(T → T +
c2 ). At the same time, it is noteworthy that the contribution of the

PM phase to the dispersive absorption curve tends to zero.
Finally, it should be noted that the resonance field of the FM phase approaches a value

which is characteristic of the ferromagnetic particle of the spherical (in the given case) shape,
i.e. Hω. In a more general case, for the particle in the form of an ellipsoid of rotation around
the z axis, the resonance field for the FM phase tends to a limit

H e
z = Hω + (Nz − N⊥)M0 (13)

as T → T +
c2 .
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(a)

(b)

(c)

Figure 3. Temperature dependences of (a) the saturation magnetization of the FM phase; (b) the
fraction of the FM phase; (c) the resonance fields for the PM (dashed line) and FM (solid line)
phases for the spherical particle. The parts of curves for which the approximations used for the
calculations of resonance fields are invalid are shown by a dotted line.

3.3. A qualitative analysis of the splitting of resonance fields in the system

For a qualitative analysis of the temperature dependence of resonance fields, let us utilize
the Weiss theory [38], according to which M0(T ) ≈ M0(0){3(T0 − T )/T0}1/2 (figure 3(a)).
Consider the case where the clusters take the form of an infinitely elongated cylinder. Then,
(n⊥ − n‖) in expression (7) is equal to 2π and Nz − na

‖ in (12) is reduced to Nz . Carry out the
calculations for the case where the fraction of FM phase linearly decreases as the temperature
increases from Tc2 to Tc1 (figure 3(b)).

Figure 3(c) shows the results of the calculations performed for the case of the spherical
particle (Nz = 4π/3) for the following values of the theory parameters: 4π M0(0)/Hω = 1
and (Tc1 − Tc2)/Tc1 = 0.5. For the temperature range from Tc2 to Tc1, the approaches that
we used to calculate the resonance fields are valid only for the temperatures for which the
conditions (Tc1 − T )/Tc1 � 1 and (T − Tc2)/Tc2 � 1 are fulfilled (dashed and solid lines in
figure 3(c)). The dotted lines show one of the possible options and are obtained by means of
joining the corresponding points near Tc2 and Tc1 by a smooth curve.

As is seen from the figure, for the case where the temperature is high enough (T > Tc1) and
the whole particle is in the PM state, the resonance field depends only on the frequency of the
exciting electromagnetic field and does not depend on T . Below Tc1, when the FM clusters are
nucleated and grow, both the PM and FM phases make contributions to the energy dissipation.
As the temperature is lowered, the resonance field for the former phase increases, whereas that
for the latter decreases (for the temperatures where (Tc1 − T )/Tc1 � 1). At the same time, the
intensity of the PM signal gets lower, in contrast to that of the FM one, which becomes higher.
As T approaches Tc2, the PM resonance field tends to the value Hω + 4π M0(Tc2)/3, but the
intensity of the PM phase is lowered to zero. The resonance field of the FM phase approaches
the value which is characteristic of the ferromagnetic particle of the spherical (in the given case)
shape, i.e. Hω.

8
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As follows from the analysis of experimental data (see, for example, [8, 10, 11, 39]), the
character of the temperature dependence of the resonance fields below and above Tc1 agrees
well with what is obtained by calculations in the present work. However, as concerns the data
for the temperatures far below Tc1, either reliable results are absent or the reliability of the
available data is questionable. One of the possible reasons for this may be the low intensity of
the PM signal in the low-temperature region and the appearance of ambiguity when one tries
to decompose the integral signal into corresponding constituents. So, in paper [8], the detailed
analysis of the magnetic resonance curves for the spherical single crystal of La0.7Ca0.3MnO3 is
carried out only for the region where the intensities of the FM and PM signals are comparable
(from 270 to 210 K), although the authors note that both the signals coexist down to 160 K.

In addition, it should be noted that the experimental results obtained in work [16] are
very close to the data shown in figure 3(c), including the non-monotonic dependence of the
resonance field of FM phase on temperature. However, the authors do not make any comments
on this behaviour.

4. Oscillations of the particle magnetization in the range of the phase coexistence

Under the resonance conditions, the magnetic field inside the particle can strongly differ from
the external field due to the magneto-dipole contributions enhanced by the resonance and this
can occur even if the fraction of the FM phase is small.

As follows from expressions (5), the oscillations of the magnetic moment of an individual
cluster depend on the motion of the average magnetization of the particle. To describe the
motion of the average magnetization, carry out a summation of the values of the magnetic
moments, determined in (5), of individual clusters and divide the sum by the particle volume.
To simplify the calculations, choose the Ox axis in the direction of the alternating external field.
At the same time, put he

y = 0. Then, the results obtained read

〈M±〉 = χ±
FM · hi± ,

hi± = he±

1 + N⊥χ±
FM

,
(14)

where χ±
FM = V −1

∑
a

νaχ
±
a . Here, the index a, used for the summation, denotes the cluster

number, hi
x is the average magnetic field inside the particle, and he± = he

x = h0 cos ωt is the
external alternating magnetic field.

At the same time, the relation (5) which describes the oscillations of a separate cluster
takes the form

m±
a = χ±

a · hi± . (15)

It follows from (14) and (15) that the character of the motion of magnetization is governed by
χ±

FM. It is noteworthy that the susceptibility χ±
a is determined by the shape of the clusters and

does not depend on their sizes. For this reason, the mean value of the cluster volume and the
average susceptibility are statistically independent.

Accounting for this, rewrite χ±
FM in the form

χ±
FM = f · χ±

a = ( f · M0/Hω) · 1/(H a
FM/Hω − 1 ± iαFM) (16)

where the overbar denotes the averaging over the ensemble of FM clusters. f = νa N/V is the
fraction of the FM phase in the particle, νa is the average volume of the FM cluster, and N is
the number of the clusters in the particle. To calculate the components of χ±

FM, assume that for

9
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the ensemble of FM clusters the distribution of the fields can be characterized by a mean field
H̄FM and root mean square (RMS) deviation from the mean field, 
HFM. Then we can write

H̄FM = H e
z − Nz M0 f + (n⊥ − n‖)M0,


HFM = σ M0,

σ =
√

((n⊥ − n‖) − (n⊥ − n‖)2).

(17)

The overbars in (17) mean the average over the ensemble of FM clusters.
Consider the case where H̄FM � 
HFM and the distribution of the internal fields of the

FM clusters constituting the ensemble is the Gaussian one:

ρFM(H a
FM) = exp(−(H a

FM − H̄FM)2/
H 2
FM)


HFM

√
2π

. (18)

After performing the averaging in (16) with the use of the distribution (18) we obtain the
expression for the coefficients of χ±

FM:

χ±
FM = χ ′

FM ± iχ ′′
FM;

χ ′′
FM =

√
π

2
· f M0


HFM
· exp

{−(Hω − H̄FM)2/
H 2
FM

}
,

χ ′
FM =

√
2

π

f M0


HFM
· exp

{−(Hω − H̄FM)2/
H 2
FM

} ·
∫ ∞

0

dx

x
e−x2

sh(2x(H̄FM − Hω)/
HFM).

(19)

5. Dispersive dependence of the absorption of electromagnetic radiation for the
coexisting PM and FM phases

Usually, what researchers observe in experiments is the curves of the dispersive absorption
of electromagnetic radiation. It is obvious that in the case under consideration both the FM
and PM phases give the corresponding contributions to the energy dissipation. We take these
contributions into account additively.

First, we calculate the dissipative contribution originating from the FM phase. To do this,
let us use the dissipation function in the Hilbert form [40]:

IFM = αFM

2γ M0

∑
a

νaṁ+
a ṁ−

a , (20)

where IFM is the intensity of the energy losses in the FM phase and the index a refers to the
cluster number a. Here, the overbar means average in time.

With regard for the expression for m±
a (see (14) and (15)), IFM can be transformed to the

form

IFM = π

4

γ HωM0|h0|2
(1 + N⊥χ ′

FM)2 + (N⊥χ ′′
FM)2

∑
a

νa

{
1

π

αFM Hω

(H a
FM − Hω)2 + (αFM Hω)2

}
. (21)

In the limit αFM → 0, the expression in braces can be replaced by the Dirac delta function
δ(H a

FM − Hω). Then, taking into account that the distribution of the internal fields of FM
clusters, H a

FM, is described by (18), we can write the dispersive dependence of the energy
losses for the FM phase in the final form:

IFM = V · γ Hω · |h0|2
4

· χ ′′
FM

(1 + N⊥χ ′
FM)2 + (N⊥χ ′′

FM)2
, (22)

where the real and imaginary components of χFM are given by (19).
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To calculate the dissipative contribution originating from the PM phase, let us use the
known expression [40]

I PM = −ω

2

∫
V −VFM

dv · χ ′′
PM · hi+

hi−
, (23)

where χ ′′
PM is the imaginary component of the tensor of paramagnetic susceptibility and hi±

are
the components of the effective magnetic field inside the particle.

With regard for (14), the expression (23) can be rewritten as

I PM = −ω

4
· V · χ ′′

PM · |h0|2
(1 + N⊥χ ′

FM)2 + (N⊥χ ′′
FM)2

, (24)

where χ ′′
PM = V −1

∫
V −VFM

dv · χ ′′
PM is the average value of the imaginary component of

paramagnetic susceptibility of the particle.
To calculate χ ′′

PM, let us proceed from the results obtained by Bloch [41]. According to
them, the local value of the imaginary component of susceptibility is determined by the relation

χ ′′
PM

χ0
= HPM

Hω

· 1/ωτ2

(HPM/Hω − 1)2 + (1/ωτ2)2 + (hi+ hi−
τ1/H 2

ωτ2)
, (25)

where τ1, τ2 are the constants of spin–spin and spin–lattice relaxation, respectively, and χ0 is
the static paramagnetic susceptibility.

It should be noted that for the typical range of frequencies (ω ∼ 1010 s−1) and fields
(h0 ∼ 0.5 Oe) used in ESR measurements, and for the typical values of the relaxation constants
(τ1 ∼ 10−6 s and τ2 ∼ 10−9 s), the condition (hi+

hi−
τ1/H 2

ωτ2) � (1/ωτ2)
2 � 1 is fulfilled.

Thus, the above expression can be considerably simplified and transformed to the form

χ ′′
PM ≈ χ0π Hωδ(HPM − Hω), (26)

where δ(HPM − Hω) is the Dirac delta function.
Since the value of magnetic field is changed in the vicinity of the average value H̄PM =

Hz − Nz M0 f , carry out the averaging of χ ′′
PM in (24) for the case where the distribution of HPM

is the Gaussian one:

ρPM(HPM) = exp(−(HPM − H̄PM)2/
H 2
PM)


HPM

√
2π

, (27)

where 
HPM is the RMS variance of the field in the volume occupied by the PM phase.
To proceed with the calculations of χ ′′

PM, let us use the natural assumption that the average
over the volume is equal to the average over the distribution (27). Then

χ ′′
PM = 1

V

∫
V −VFM

dv · χ ′′
PM = (1 − f )

∫ +∞

−∞
dHPM · χ ′′

PM · ρPM(HPM). (28)

Integration in (28) with regard for (26) and (27) results in

χ ′′
PM = χ0(1 − f )

√
π

2
· Hω


HPM
· exp

{−(Hω − H̄PM)2/
H 2
PM

}
. (29)

In the final form, with regard for the contributions originating from the FM and PM phases,
the expression for the dissipative losses can be represented as

I = I0 · χ ′′
FM + χ ′′

PM

(1 + N⊥χ ′
FM)2 + (N⊥χ ′′

FM)2
,

I0 = V · γ Hωh2
0

4
.

(30)
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Figure 4. The curves of the dispersive absorption for the spherical particle, calculated for various
temperatures. The value of the parameter (Tc1 − T )/Tc1 is equal to 0 (a); 0.045 (b); 0.01 (c);
0.15 (d). The other parameters used for the calculations are 
HFM/Hω = 0.2, 
HPM/Hω = 0.1,
and χ0 = 7 × 10−3.

Figures 4(a)–(d) show the curves of the dispersive absorption calculated for the spherical
particle for a series of temperatures in the vicinity of Tc1. The calculations were performed for
the same values of the parameters as were used in section 3.3. The variables that are functions
of temperature are the magnetization M0(T ) and the fraction of FM phase f (T ) (see figure 3).
All the other parameters were set to not depend on temperature. It is noteworthy that account
of the temperature dependence of χ0 will not change the picture qualitatively but only lead to
the renormalization of the temperature scale.

As follows from the calculations, for the high temperature region (T/Tc1 � 1), the
absorption spectrum consists of a single line centred at Hω (see figure 4(a)). As the temperature
is lowered below Tc1, the contribution which is associated with the nucleation and growth of
the FM clusters and characterized by a resonance field smaller than Hω becomes noticeable
(see figure 4(b)). Further decrease in the temperature leads to the increase in the FM signal
intensity with a simultaneous decrease in its resonance field value. The inverse situation is
characteristic of the PM signal (see figure 4(b)–(d)). The shape of the resulting curve strongly
depends on the saturation magnetization and fraction of the FM phase, magnetic susceptibility
of the PM phase, the values of 
HFM and 
HPM, as well as on the character of the temperature
changes of these parameters. The further decrease in the temperature gives rise to the complete
domination of the FM phase and to the approach of the parameters of the resonance curve to
those characteristic of the uniformly magnetized FM particle whose shape is the governing
factor determining the location of the ferromagnetic resonance line.

Finally, let us discus the limits of applicability of the approach developed. The main idea of
this approach is to replace all interactions at any point of the particle with an average (effective)
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interaction (see (1)). Thus, the whole formalism is valid provided that the basic concepts of
the mean field approximation are true [19, 38]. Comparison of the results calculated in this
paper with those obtained experimentally shows that both the character of the dependences and
features of their temperature change (see figures 3 and 4) well agree with the experimental data
obtained by various research groups on the single- and polycrystalline samples of the doped
manganites [9, 11, 16, 39]. Further extensive work is needed to specify the factors influencing
the parameters of resonance curves within the region of the PM and FM phase coexistence in
order to deepen the comprehension of the physics of this class of materials and show ways for
the goal-oriented modification of their properties.

6. Conclusions

In the present work, the magnetization dynamics is considered for the system in which the PM
and FM phases coexist over a wide temperature range and are in an equilibrium state. It is
shown that in the cases where one of the phases prevails the energy of the system achieves
a minimum when the clusters of the second phase take the shape of the regions elongated
along the direction of the external magnetic field. Near the boundaries of the phase coexistence
region, the expressions for the resonance fields of the PM and FM phases are obtained and the
dispersive dependence of the energy absorption of electromagnetic radiation is calculated. The
resonance field for the PM phase is shown to increase with the temperature lowering, while the
resonance field for the FM phase first decreases and then approaches a value characteristic of
the uniformly magnetized ferromagnetic sample. It is shown that the scenario described agrees
well with the experimental data obtained on various kinds of samples of doped perovskite
manganites.
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